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Decision-Focused Learning by Minimizing Regret

We consider combinatorial optimization problem v*(c¢) = argmin, .y f(v, ¢).
Train to minimize regret of predicting ¢: regret(¢, c) = f(v*(¢),c) — f(v*(c), c)

Training Loop in Decision-focused Learning
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Challenge

e Repeatedly solving the combinatorial optimization problem for each instance in each
training loop.

e \We propose training with limited number of solving the optimzation problem.
Rank-based Loss function

e We want to predict ¢ so that f(v,c) and f(v,¢) follow same ordering in domain V.
e Formulated as learning to rank v € V' w.r.t. objective function f(.,.).

e [n practice, as V is intractable, we learn to rank v € S C V.

Proposed Training Loop with Rank-based loss
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Decision-Focused Learning:
Through the Lens of Learning to Rank

Jayanta Mandi, Victor Bucarey, Maxime Mulamba, Tias Guns

Pointwise Loss Functions

Regress predicted objective values f(v,¢) on the actual objective values f(v,c) for
v ES:

ﬁ S (F0.8) — f(v,0)) (1)

Pairwise Loss Functions

Instead of treating each v € S separately, here we do a pairwise comparison of
(v, V) € S

> max (0, v + f(v,, &) — f(vg, ¢)) (2)

(Vp,0g) €4 (Vp,0g)| [ (0p,€) < f (vg,0) }
Generalization of NCE loss (Mulamba et al.)

Instead of all possible (O(|.S|?) pairs, we propose best-versus-rest pair generation scheme,
where we compare all other v € S with vy = argmin, ¢ f(v, c).

Zmax (v + f(Vpest, €) — f(v,¢))) (3)

The NCE loss proposed by [1] is particular case of this without the Relu operator and
v =0.

Pairwise Difference Loss Functions

Regress pairwise difference of predicted objective values on difference of true objective

values.
Z <(f(vbesta é) — f(U, é)) — (f(vbest, C) — f(v, c))) (4)
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Listwise Loss Function

Listwise loss is computed based on the ordering of the entire set S. We define the
following discrete probability distribution of v € S being Vst

p(v:7.¢) = %Z exp ( fw, C)> Yo € S (5)
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We define listwise loss as the cross entropy loss between the predicted and the true
distribution:

‘S‘vaTc)logp(v T, C) (6)
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We lower regret by minimizing rank-based loss
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Comparison with Other Approaches
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