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Contribution

e We propose a Differentiable Optimization layer that methodically connects the deriva-
tives used for optimisation and the gradients used for learning

o Specifically for Linear Programs (LP), we differentiate the Homogeneous Self-dual
(HSD) embedding, the same formulation used for solving LP problems by interior
point methods

e On the challenging problems of prediction+optimization for Mixed Integer Linear Pro-
gram, we show that this framework outperforms the state of the art

Prediction+Optimisation Setting

LP Optimization

minec'

st. Ax = b:x > 0

e With ¢ being unknown but historic data {(z, c)} are available to predict ¢ from z
e Neural Net predictions ¢ = m(z) will be fed to the optimizer.

e The aim is to generate predictions 2*(¢) to minimize the task loss ¢' (z*(¢) — z*(c))
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Backward Pass

Challenges

AN

e For the backward pass the derivative of task loss: ¢' (z*(¢)—x*(c)) must be computed

o Computing the derivative of 2*(¢) w.r.t. ¢, i.e. 2x*(¢) = argmin differentiation

Differentiating the KKT condition

For an optimization problem: min f(c, x)s.t.Ax = b;x > 0, the Lagrangian relaxation:
L(z,y:c) = f(c,x) +y' (b — Ax) ; dual variable: (1)
And the KKT conditions are:
folc,z) — Aly = 2)
Ar —b=0
Implicit differentiation of Eq. (2) w.r.t. ¢ yields:

{fcx(ga l’)} n {fm(j z) gﬂ} By} — () (3)

. Interior Point Solving for LP-based prediction+-optimisation
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Previous Work ( Wilder et al., 2019)!

e To solve Eq. (3) f..(c,x) # 0= f(c,x) strictly convex

e Wilder et al. proposed to add an external quadratic regularization term to turn the

LP into a QP, and differentiate Eq. (3)
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Compute Task Loss:
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Backward Pass

Adding a log-barrier function

e A common tool in LP programming is the log barrier function: )\(Zle Zn(xz))
which entails the constraint x > 0.

e We propose to differentiate the KK'T conditions of the LP after adding the log-barrier

function: i.e. f(c, x) = CTIL’ — A(Zle Zn(%))

e We do not differentiate at the optimal point (as at the optimal point A ~ 0) but
rather at the neighborhood of the optimal point

Homogeneous Self-dual embedding

e Interior Point (IP) Solvers does not directly solve the KKT conditions. Instead a
homogeneous self-dual formulation is formed which has two additional parameters.

e [ he advantage of homogeneous self-dual formulation is it always has a strictly com-
plementary solution and based which parameter is 0, it can detect whether the LP
problem is infeasible.

e |P solvers solve the LP using a "homotopy strategy” where a sequence of “easier”
problems are solved for a decreasing sequence of the barrier parameter .

e T he method can start from any point even from a point infeasible to the original LP.
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Differentiating Homogeneous Self-dual embedding

e Instead of the KKT conditions, differentiate the HSD embedding

e \We stop solving in the forward pass when )\ goes below a threshold value A-cut-off

Forward Pass
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LP Forward Pass

1. Solve the Homogeneous
Self-dual embedding
2. Perform a Newton step

3. Decrease A
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A LP Backward Pass
1. Differentiate the Homogeneous

Self-dual embedding computed
in the Forward pass

2. Compute and backpropagate
dx*(€)/d¢é

Update Neural Net |
parameters to
minimize Task Loss

Backward Pass

KKT vs HSD

KKT, log barrier HSD, log barrier
)\/)\—cut—off 10 1073 10719 10-1 103 10~10

Regret 14365 14958 21258 10774 14620 21594

Table 1: Differentiating the HSD formulation is more efficient than differ-
entiating the KK'T condition

Comparison with the state of the art

Two-stage QPTL! SPQ?%:3 HSD,log barrier
O-layer 1-layer O-layer 1-layer O-layer 1-layer O-layer 1-layer

745 796 3516 2 x 107 3327 3955 2975 1.6 x 10
(7) (5) (56) (4x107) (485) (300) (620) (1 x 107)

13322 13590 13652 13590 11073 12342 10774 11406
(1458) (2021) (325) (288)  (895) (1335) (1715) (1238)

MSE-loss

Regret

Table 2. Our approach is able to outperform the state of the art
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