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Contribution

• We propose a Differentiable Optimization layer that methodically connects the deriva-
tives used for optimisation and the gradients used for learning

• Specifically for Linear Programs (LP), we differentiate the Homogeneous Self-dual
(HSD) embedding, the same formulation used for solving LP problems by interior
point methods

• On the challenging problems of prediction+optimization for Mixed Integer Linear Pro-
gram, we show that this framework outperforms the state of the art

Prediction+Optimisation Setting

LP Optimization
min c>x

s.t. Ax = b;x ≥ 0

• With c being unknown but historic data {(z, c)} are available to predict c from z

• Neural Net predictions ĉ = m(z) will be fed to the optimizer.

• The aim is to generate predictions x∗(ĉ) to minimize the task loss c>(x∗(ĉ)− x∗(c))

Challenges

• For the backward pass the derivative of task loss: c>(x∗(ĉ)−x∗(c)) must be computed

• Computing the derivative of x∗(ĉ) w.r.t. ĉ, i.e. ∂
∂ĉx
∗(ĉ)⇒ argmin differentiation

Differentiating the KKT condition

For an optimization problem: min f(c,x)s.t.Ax = b;x ≥ 0, the Lagrangian relaxation:

L(x, y; c) = f (c, x) + y>(b− Ax) ; dual variable: y (1)

And the KKT conditions are:

fx(c, x)− A>y = 0

Ax− b = 0
(2)

Implicit differentiation of Eq. (2) w.r.t. c yields:[
fcx(c, x)

0

]
+

[
fxx(c, x) −A>

A 0

] [
∂
∂cx
∂
∂cy

]
= 0 (3)

Previous Work ( Wilder et al., 2019)1

• To solve Eq. (3) fxx(c, x) 6= 0⇒ f (c, x) strictly convex

• Wilder et al. proposed to add an external quadratic regularization term to turn the
LP into a QP, and differentiate Eq. (3)

Adding a log-barrier function

• A common tool in LP programming is the log barrier function: λ
(∑k

i=1 ln(xi)
)

,

which entails the constraint x ≥ 0.

• We propose to differentiate the KKT conditions of the LP after adding the log-barrier

function; i.e. f (c, x) := c>x− λ
(∑k

i=1 ln(xi)
)

• We do not differentiate at the optimal point (as at the optimal point λ ' 0) but
rather at the neighborhood of the optimal point

Homogeneous Self-dual embedding

• Interior Point (IP) Solvers does not directly solve the KKT conditions. Instead a
homogeneous self-dual formulation is formed which has two additional parameters.

• The advantage of homogeneous self-dual formulation is it always has a strictly com-
plementary solution and based which parameter is 0, it can detect whether the LP
problem is infeasible.

• IP solvers solve the LP using a “homotopy strategy” where a sequence of “easier”
problems are solved for a decreasing sequence of the barrier parameter λ.

• The method can start from any point even from a point infeasible to the original LP.

Differentiating Homogeneous Self-dual embedding

• Instead of the KKT conditions, differentiate the HSD embedding

• We stop solving in the forward pass when λ goes below a threshold value λ-cut-off

KKT vs HSD

KKT, log barrier HSD, log barrier

λ / λ-cut-off 10−1 10−3 10−10 10−1 10−3 10−10

Regret 14365 14958 21258 10774 14620 21594

Table 1: Differentiating the HSD formulation is more efficient than differ-
entiating the KKT condition

Comparison with the state of the art

Two-stage QPTL1 SPO2,3 HSD,log barrier
0-layer 1-layer 0-layer 1-layer 0-layer 1-layer 0-layer 1-layer

MSE-loss
745
(7)

796
(5)

3516
(56)

2× 109

(4× 107)

3327
(485)

3955
(300)

2975
(620)

1.6× 107

(1× 107)

Regret
13322
(1458)

13590
(2021)

13652
(325)

13590
(288)

11073
(895)

12342
(1335)

10774
(1715)

11406
(1238)

Table 2: Our approach is able to outperform the state of the art
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